Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET.
نویسندگان
چکیده
We fractionated frontal cortical grey matter from human Alzheimer's disease and control subjects into four biochemically defined pools that represent four distinct compartments: soluble/cytosolic, peripheral membrane/vesicular cargo, integral lipid/membranous pools and aggregated/insoluble debris. Most of the readily extractable amyloid-β remains associated with a lipid/membranous compartment. There is an exchange of amyloid-β between the biochemical pools that was lost for the amyloid-β42 species in Alzheimer's disease, consistent with the peptide being irreversibly trapped in extracellular deposits. The quantitative amyloid-β data, combined with magnetic resonance imaging volumetric analysis of the amount of cortical grey matter in brain, allowed us to estimate the total mass of amyloid-β in Alzheimer's disease (6.5 mg) and control (1.7 mg) brains. The threshold positron emission tomography standard uptake value ratio of 1.4 equates to 5.0 μg amyloid-β/g of grey matter and the mean Alzheimer's disease dementia standard uptake value ratio level of 2.3 equates to 11.20 μg amyloid-β/g of grey matter. It takes 19 years to accumulate amyloid from the threshold positron emission tomography standard uptake value ratio to the mean value observed for Alzheimer's disease dementia. This accumulation time window combined with the difference of 4.8 mg of amyloid-β between Alzheimer's disease and control brain allows for a first approximation of amyloid-β accumulation of 28 ng/h. This equates to an estimated 2-5% of the total amyloid-β production being deposited as insoluble plaques. Understanding these rates of amyloid-β accumulation allows for a more quantitative approach in targeting the failure of amyloid-β clearance in sporadic Alzheimer's disease.
منابع مشابه
Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease.
Recent studies suggest that subcortical structures, including striatum, are vulnerable to amyloid-β accumulation and other neuropathological features in familial Alzheimer's disease due to autosomal dominant mutations. We explored differences between familial and sporadic Alzheimer's disease that might shed light on their respective pathogenic mechanisms. To this end, we analysed 12 brain regio...
متن کاملβ-Amyloid is associated with aberrant metabolic connectivity in subjects with mild cognitive impairment
Positron emission tomography (PET) studies using [18F]2-fluoro-2-deoxyglucose (FDG) have identified a well-defined pattern of glucose hypometabolism in Alzheimer's disease (AD). The assessment of the metabolic relationship among brain regions has the potential to provide unique information regarding the disease process. Previous studies of metabolic correlation patterns have demonstrated altera...
متن کاملScreening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons
Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...
متن کاملLRP-1 polymorphism is associated with global and regional amyloid load in Alzheimer's disease in humans in-vivo
OBJECTIVE Impaired amyloid clearance has been proposed to contribute to β-amyloid deposition in sporadic late-onset Alzheimer's disease (AD). Low density lipoprotein receptor-related protein 1 (LRP-1) is involved in the active outward transport of β-amyloid across the blood-brain barrier (BBB). The C667T polymorphism (rs1799986) of the LRP-1 gene has been inconsistently associated with AD in ge...
متن کاملDiverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease
Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 140 5 شماره
صفحات -
تاریخ انتشار 2017